553 research outputs found

    How Much Longer Will it Take? A Ten-year Review of the Implementation of United Nations General Assembly Resolutions 61/105, 64/72 and 66/68 on the Management of Bottom Fisheries in Areas Beyond National Jurisdiction

    Get PDF
    The United Nations General Assembly (UNGA) in 2002 adopted the first in a series of resolutions regarding the conservation of biodiversity in the deep sea. Prompted by seriousconcerns raised by scientists, non-governmental organizations (NGOs) and numerous States,these resolutions progressively committed States to act both individually and through regional fishery management organizations (RFMOs) to either manage bottom fisheries in areas beyond national jurisdiction to prevent significant adverse impacts on deep-sea species, ecosystems and biodiversity or else prohibit bottom fishing from taking place.Ten years have passed since the adoption of resolution 61/105 in 2006, calling on States to take a set of specific actions to manage bottom fisheries in areas beyond national jurisdiction to protect vulnerable marine ecosystems (VMEs) from the adverse impacts of bottom fishing and ensure the sustainability of deep-sea fish stocks. Despite the considerable progress by some RFMOs, there remain significant gaps in the implementation of key elements and commitments in the resolutions. The Deep Sea Conservation Coalition (DSCC) has prepared this report to assist the UNGA in its review in 2016 and to address the following question: How effectively have the resolutions been implemented

    Unfinished Business: a Review of the Implementation of the Provisions of United Nations General Assembly Resolutions 61/105 and 64/72, Related to the Management of Bottom Fisheries in Areas Beyond National Jurisdiction

    Get PDF
    In 2006 the General Assembly adopted resolution 61/105, based on a compromise proposal offered by deep-sea fishing nations, which committed States and regional fisheries management organisations [RFMOs] to take specific measures to protect vulnerable marine ecosystems [VMEs] from the adverse impacts of bottom fisheries in the high seas and to ensure the longterm sustainability of deep-sea fish stocks. These measures included conducting impact assessments to determine whether significant adverse impacts[SAIs] to VMEs would occur, managing fisheries to prevent SAIs on VMEs, and closing areas of the high seas to bottom fishing where VMEs are known or likely to occur, unless regulations are in place to prevent SAIs and to manage sustainably deep-sea fish stocks. Based on a review in 2009 of the actions taken by States and RFMOS, the UNGA adoptedresolution 64/72 that reaffirmed resolution 61/105 and strengthened the call for action through committing States, inter alia, to ensure that vessels do not engage in bottom fishing until impact assessments have been carried out and to not authorise bottom fishing activities until the measures in resolutions 64/72 and 61/105 have been adopted andimplemented

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Altered hippocampus synaptic function in selenoprotein P deficient mice

    Get PDF
    Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS

    The effect of word sense disambiguation accuracy on literature based discovery

    Get PDF
    Background The volume of research published in the biomedical domain has increasingly lead to researchers focussing on specific areas of interest and connections between findings being missed. Literature based discovery (LBD) attempts to address this problem by searching for previously unnoticed connections between published information (also known as “hidden knowledge”). A common approach is to identify hidden knowledge via shared linking terms. However, biomedical documents are highly ambiguous which can lead LBD systems to over generate hidden knowledge by hypothesising connections through different meanings of linking terms. Word Sense Disambiguation (WSD) aims to resolve ambiguities in text by identifying the meaning of ambiguous terms. This study explores the effect of WSD accuracy on LBD performance. Methods An existing LBD system is employed and four approaches to WSD of biomedical documents integrated with it. The accuracy of each WSD approach is determined by comparing its output against a standard benchmark. Evaluation of the LBD output is carried out using timeslicing approach, where hidden knowledge is generated from articles published prior to a certain cutoff date and a gold standard extracted from publications after the cutoff date. Results WSD accuracy varies depending on the approach used. The connection between the performance of the LBD and WSD systems are analysed to reveal a correlation between WSD accuracy and LBD performance. Conclusion This study reveals that LBD performance is sensitive to WSD accuracy. It is therefore concluded that WSD has the potential to improve the output of LBD systems by reducing the amount of spurious hidden knowledge that is generated. It is also suggested that further improvements in WSD accuracy have the potential to improve LBD accuracy

    ApoE isoform-dependent changes in hippocampal synaptic function

    Get PDF
    The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR) mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP) is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure
    corecore